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Abstract

The paper presents some theorems about interlaced spheres of different dimensions in
multidimensional spaces. Two spheres Sk and Sm are called interlaced with each other if their
intersection is empty, however, one of them crosses each topological ball whose boundary is the other
sphere. We describe a method of simulating interlaced spheres in computer. We demonstrate the
connection between the notion of a tunnel in a multidimensional "body", i.e. in a connected subset of
a multidimensional space, and that of interlaced spheres. Examples of multidimensional tunnels in
four- and five-dimensional spaces are demonstrated.
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1      Introduction
It is well-known that two closed curves in a three-dimensional Euclidean space can be
interlaced with each other. This means that the curves do not intersect each other, however,
each curve intersects any topological disk spanning the other curve. When considering a line
segment as a one-dimensional disk D1 and its boundary (which is a pair of points) as a zero-
dimensional sphere S0 (consisting of two end points of D1) some obvious generalizations
become possible: a pair of points may be interlaced with a closed curve in a 2D Euclidean
space. This fact is another interpretation of the famous Jordan curve theorem. In the language
of interlaced spheres it means that in a 2D Euclidean space an S0 may be interlaced with an
S1. In Section 2 we prove a more general assertion: in an n-dimensional space homeomorphic
to an n-dimensional ball an Sk may be interlaced with an Sm if and only if m=n−k−1 or
k+m+1=n.

In section 3 we show how the Jordan theorem may be generalized for multidimensional
spaces and spaces with disconnected boundaries.

It is easy to see that the common notion of a tunnel in a 3D body may be interpreted in the
language of interlacing as follows: the body is interlaced with an S1 which is not crossing the
body, i.e. there exist in the body and on its surface a set CC of simple closed curves which do
not intersect the said S1, however each disk B2 spanning a curve of CC intersects S1 and vice
versa: each disk spanning S1 intersects all curves of CC.

We shall investigate in what follows the above supposition about the interlacing spheres,
formulate the multidimensional version of the Jordan theorem, formulate the Jordan theorem
for spaces which are subsets of two- and three-dimensional spheres and investigate tunnels in
subsets of some simply connected multidimensional spaces. We also will demonstrate how to
simulate all this situations in computer.

2      Basic notions
It is known [Moise 52] that manifolds of dimension 2 and 3 may be triangulated and that
homeomorphic 2- and 3-manifolds are combinatorially homeomorphic. This knowledge may
serve as the theoretical base for applying methods of combinatorial topology for the
development of computer algorithms for topological investigations. Two complexes are called
combinatorially homeomorphic if their simplicial schemata become isomorphic after finite
sequences of elementary subdivisions [Still 95]. However, simplicial complexes contain too
many elements and therefore are difficult to process. To overcome this drawback simplices
may be united to greater cells by an operation inverse to the subdivision: a subcomplex
combinatorially homeomorphic to a k-simplex (or equivalently to a k-ball) may be declared to
be a k-dimensional cell or a k-cell. In what follows we shall write "homeomorphic" for
"combinatorially homeomorphic".

While simplices are mostly considered as subsets of a Euclidean space we prefer to work with
ACCs [Kov 89, Kov 92]. An ACC is a set of abstract cells. A non-negative integer is
assigned to each cell. It is called the dimension of the cell. The set is provided with an
antisymmetric, irreflexive and transitive binary relation called bounding relation. A cell can
only bound another cell of higher dimension.

ACCs differ both from simplicial and Euclidean complexes in so far that an abstract cell is
never a part of another cell. This property makes it possible to easily introduce the notion of
open subsets of an ACC and thus to define a T0-topology on it in accordance with classical
axioms [Kov 89]. An ACC is not a quotient space of a Hausdorff space and thus it is
independent form any such space. This is another advantage of the ACCs: a topological space
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which is a finite ACC may be directly represented in computer. Thus there is no necessity to
consider theoretical problems in a Hausdorff space (which is not representable in computer)
and then to transfer the results to a different set represented in the computer. All topological
properties of ACCs and their elements may be directly computed in computer. This advantage
of the ACCs is widely used in the present investigation. We represent topological spaces in
computer as ACCs.

2      Interlaced Multidimensional Spheres
Consider an n−dimensional ACC An which is homeomorphic to an n-dimensional ball. In
what follows we shall call such an ACC simply an n-ball and denote by Bn. The boundary ∂Bk

of Bk is usually called a standard (k−1)-sphere and denoted by S(k−1). The ball Bk is said to
span Sk=∂Bk. Since we shall consider only standard spheres we shall call them simply
spheres.

Definition IS: Two spheres Sm and Sk are called interlaced with each other if they do not
intersect each other but each of them intersects every ball spanning the other sphere.

Definition BP: A subspace BPm of an n-dimensional Cartesian ACC An [Kov 92], whose cells
c∈BPm have m variable topological coordinates while the remaining n−m coordinates are
constant, is called an m-dimensional basic plane of An.

Theorem IS: Two spheres Sm and Sk embedded in an n-dimensional ball Bn may be interlaced
with each other if and only if m+k+1=n.

Proof: Let us show that such spheres really exist. Consider first the simpler case in which the
ball Bn is an n-dimensional Cartesian ACC An. Consider an (m+1)-dimensional ball B(m+1)

being a subset of an (m+1)-dimensional basic plane E(m+1) of An and a (k+1)-dimensional ball
B(k+1) being a subset of a (k+1)-dimensional plane E(k+1). Let Sm=∂B(m+1) and Sk=∂B(k+1).

Consider now the intersection I of B(k+1) with E(m+1). It is obviously a ball of dimension not
exceeding the minimum of k+1 and m+1. We shall show that I must be a one-dimensional
ball, i.e. a line segment. Really, if I has a dimension greater than one then its boundary ∂I is a
sphere of dimension greater than zero and therefore ∂I is connected. There are two
possibilities:

a) I lies completely in B(m+1) without crossing its boundary. Then, there is also no crossing of
B(k+1) with Sm, which contradicts the Definition IS. Really:

I∩∂B(m+1)=∅  (B(k+1)∩E(m+1))∩∂B(m+1)=∅ 

B(k+1)∩(E(m+1)∩∂B(m+1))=∅ B(k+1) ∩∂B(m+1) =∅ B(k+1) ∩Sm=∅;

b) I crosses ∂B(m+1). Then there are two points in I: one in the interior and one in the exterior
of B(m+1). If the dimension of I is greater than one, then ∂I is a sphere of dimension greater
than 0 and is connected. Then ∂I must cross ∂B(m+1)=Sm. Since ∂I is a subset of Sk it follows
that Sk crosses Sm, which contradicts the Definition IS. If however the dimension of I is one
then ∂I is a sphere of dimension 0. It consists of two disjoint points and thus is
disconnected. Therefore Sk does not cross Sm.

The dimension of I cannot be 0 since in that case I would consist of a single point. However,
according to Definition IS I=B(k+1)∩E(m+1) contains the intersection Sk∩B(m+1) since Sk⊂B(k+1)

and B(m+1)⊂E(m+1). It also contains the intersection Sm∩B(k+1) since Sm⊂E(k+1). But the first
intersection lies in the interior of B(m+1) (Sk and ∂B(m+1) do not intersect), while the second
intersection lies in ∂B(m+1)=Sm. One point cannot lie both in the interior and in the boundary.
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Thus we have proved that the dimension of the intersection of B(k+1) with E(m+1) is exactly one.
Since these sets are subspaces of the n-dimensional space An the sum of their dimensions
minus 1 (the dimension of their intersection) cannot exceed n: k+1+m+1−1≤n or k+m+1≤n. It
remains to show that k+m+1=n.

According to the condition, Sk must cross any ball spanning Sm. According to the above
consideration the ball B(m+1) lies in the same (m+1)-dimensional plane E(m+1) as Sm itself. The
ball B(m+1) is crossed by Sk. However if the dimension n of the space is greater than k+m+1
then there is at least one degree of freedom outside of the two planes E(k+1) and E(m+1). This
degree of freedom may be used to construct another ball B' of dimension m+1 having the
same boundary Sm and not crossing Sk. Really:

Let v be the coordinate vector orthogonal to both E(k+1) and E(m+1). Then the ball B(m+1) being
translated by v and united with the direct product v×Sm composes the ball

B'=T(B(m+1), v) ∪ v×Sm;

where T(B(m+1), v) denotes the ball B(m+1) translated by v.

The boundary of B' is again Sm since the boundary of v×Sm consists of two spheres one of
which is Sm and the other is identical with the boundary of T(B(m+1), v) and thus does not
belong to the boundary of B'. The first term of B' lies in the plane T(E(m+1), v) not intersecting
E(k+1). The second term is orthogonal to E(k+1). Hence neither of them intersects Sk.

Thus we have shown, that there exist in an n-dimensional ACC An two interlaced spheres of
dimensions k and m if and only if k+m+1=n. The spheres lie in two planes of dimensions k+1
and m+1 respectively while the intersection of the planes is one-dimensional. It may be shown
that any two standard spheres of the same dimensions may be interlaced with each other if
there exists such a homeomorphism of the space An onto itself which brings the spheres into
the corresponding planes. 

Supposition SP. For any k-dimensional standard sphere Sk in an n-dimensional space An there
exists a homeomorphism of An onto itself which puts Sk into a (k+1)-dimensional basic plane.

Corollary IS: For any k-dimensional sphere Sk in an n-dimensional space satisfying the
above supposition there exists an (n−k−1)-dimensional sphere interlaced with Sk.

Proof: After having transformed the space (according to Supposition SP) in such a way that
Sk lies in a (k+1)-dimensional plane E(k+1) one can construct another, (m+1)-dimensional plane
E(m+1) with m=n−k−1 whose intersection with E(k+1) is one-dimensional. The plane E(m+1) must
intersect Sk. Let P∈E(m+1)∩Sk be a point in the intersection and B(m+1)

 ⊂ E(m+1) any (m+1)-
dimensional ball containing P. The boundary ∂B(m+1) satisfies the conditions of Theorem IS
and thus it is the desired interlaced sphere.

3      Examples of interlaced spheres
Fig. 1 represents some examples of interlaced spheres in spaces of dimension from 0 to 3. An
important special case is that of m=0 and k=n−1. In this case one of the spheres consists of
two disjoint points. According to Theorem IS any simple curve connecting the points crosses
the other sphere S(n−1) of dimension n−1. We shall show in Section 4 (Theorem MJ) that for
all n>1 the rest of the space is subdivided by S(n−1) into exactly two components which is the
contents of the multidimensional Jordan theorem for spheres.
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a)   n=1;   k=0;   m=0;

     (No Jordan property: 3 components)

b)   n=2;   k=1;   m=0;

     (2D Jordan property)

c)  n=3;   k=2;   m=0;
    (3D Jordan property);

d)   n=3;   k=1;  m=1;

    (two simple closed curves interlaced with each other)

Fig. 1. Examples of interlaced spheres in spaces of dimension 1 to 3

Examples for higher dimensions may be produced by means of computer. We have
represented an n-dimensional Cartesian ACC An with n=4 and 5 as an n-dimensional array of
bytes. The indices x, y, z, t and u (the latter only in the 5D case) of the array are the
topological coordinates. Thus the array contains a byte for each cell of An of any dimension
from 0 to n.
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We have labeled the bits of the bytes according to the membership of the corresponding cell
in different subsets as follows (Fig. 2):

bit 0 (label 1) for cells of Int(B(k+1), E(k+1));

bit 1 (label 2) for cells of ∂B(k+1);

bit 2 (label 4) for cells of Int(B(m+1), E(m+1));

bit 3 (label 8) for cells of ∂B(m+1);

Here Int(B(k+1), E(k+1)) denotes the interior of B(k+1) relative to the subspace E(k+1) which means
that Int(B(k+1), E(k+1)) does not contain ∂B(k+1). The same is true for Int(B(m+1), E(m+1)).

If a cell is in the intersection of some of the above mentioned subsets then its byte has all the
bits corresponding to the subsets. For example, in the intersection Int(B(k+1))∩∂B(m+1) both bits
0 and 3 must be set. Thus the corresponding byte must have the label 1+8=9 etc.

Fig. 2. Assigning labels to balls and spheres

The program has labeled as Int(B(k+1)) an three-dimensional parallelepiped (k=2) in the plane
t(=u)=Const and as Int(B(m+1)) an (n−k)-dimensional parallelepiped in the orthogonal plane
x=y=Const. Then the program has labeled the boundaries of the parallelepipeds as ∂B(k+1) and
∂B(m+1) respectively and computed a histogram of labels. The histograms for the cases of 4D
and 5D are represented in Table 1 and Table 2 respectively.

Table 1
Number of cells of different dimensions and labels in the 4D ACC; k=2; m=1.

Number of cells with label:
Dim 0 1 2 4 5 6 8 9 10

0 624 6 55 1 1 1 11 1 0
1 2636 34 108 8 2 0 12 0 0
2 4084 54 54 8 0 0 0 0 0
3 2773 27 0 0 0 0 0 0 0
4 700 0 0 0 0 0 0 0 0

As one can see, the intersection of the spheres, which should have the label 2+8=10 is empty
while the intersection of Sk with B(m+1) (label 6) as well as the intersection of Sm with B(k+1)

(label 9) contain one point (0-cell) each.

∂B(k+1); label 2
Int(B(k+1), E(k+1))
label 1

Int(B(m+1), E(m+1)))
label 4

∂B(m+1); label 8
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Table 2
Number of cells of different dimensions and labels in the 5D ACC; k=m=2.

Number of cells with label:
Dim 0 1 2 4 5 6 8 9 10

0 2694 6 55 1 1 1 41 1 0
1 13762 34 108 14 2 0 80 0 0
2 27824 54 54 28 0 0 40 0 0
3 27957 27 0 16 0 0 0 0 0
4 14000
5 2800 0 0 0 0 0 0 0 0

The intersections are again in full correspondence with the theory.

The list of possible interlaced spheres in spaces of different dimensions, which was started
with Fig. 1, may be continued as follows:

e) n=4;   k=3;   m=0;   (4D Jordan property);

f) n=4;   k=2;   m=1;   (S2 interlaced with S1, as represented in Table 1);

g) n=5;   k=4;   m=0;   (5D Jordan property);

h) n=5;   k=3;   m=1;   (S3 interlaced with  S1);

i) n=5;   k=2;   m=2;    (S2 interlaced with S2, as represented in Table 2).

4      The Jordan property in multidimensional spaces
The validity of the famous Jordan theorem in finite or "discrete" spaces was multiply
discussed in the literature. The property of a subset SS⊂S of the space S to decompose its
complement S−SS into exactly two components is often called the Jordan property of SS. It
was proven in [Brower 12] that an (n−1)-dimensional sphere embedded into the
n-dimensional Euclidean space possesses the Jordan property. However, this is not the most
general case: the Jordan property depends on both: the nature of the space and on that of the
subset. From the point of view of applications it is important to know which subsets of which
spaces possess the Jordan property. We shall investigate in what follows the Jordan property
of some subsets of ACCs.

First of all it should be noticed that the frontier of a subset often has the Jordan property.
However, the conditions for this must be investigated. One may find in a text book for
topology (e.g. in [Rin 75] that if SC is a subset of a space S then

S=Int(SC, S)∪Fr(SC, S)∪Ext(SC, S) (1)

while each two of the three sets on the right hand side of (1) are disjoint. It is of course not
enough for the Jordan property since some of the sets may be empty or disconnected. To
specify the conditions for the Jordan property we need the notion of a simple frontier:

Definition SF: The frontier F of an n-dimensional subcomplex SC of an n-dimensional ACC
An is called simple if for each cell c∈F the intersection of the SON*(c) with both SC and its
complement An−SC is not empty and connected.
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Fig. 3 shows some examples of subcomplexes whose frontiers are not simple.

a       b      c

Fig. 3. Examples of subcomplexes whose frontiers are not simple

In Fig. 3a both intersections of SON*(P) with the shaded two-dimensional complex and with
its complement (the background) are disconnected. In Fig. 3b the intersections of SON*(Q)
with the three-dimensional complex containing six voxels (one of them is invisible) is
connected, but the intersection with the background (two voxels) is disconnected. In Fig. 3c
the intersection of SON*(C) of a 1-cell C with the shaded two-dimensional complex
containing C is empty since C does not belong to SON*(C).

Consider a finite topological space which is an n-dimensional ACC An homeomorphic to a
closed n-ball. The boundary ∂An is then homeomorphic to a sphere. Let us call the union of
the SONs of all cells of ∂An the boundary shell of An.

Definition BS: An n-dimensional subcomplex SC of An is called bounded in An if it does not
cross the boundary shell of the space.

Theorem MJ: The frontier Fr(SC) of an n-dimensional bounded subcomplex SC of an
n-dimensional Cartesian ACC An possesses the Jordan property if and only if it is connected
and simple.

Proof: Consider a cell c1 of SC and choose an arbitrary coordinate axis X of An. Consider a
sequence of mutually incident cells (c1, c2, ..., cm) such that for all cells of the sequence all
topological coordinates but the X-coordinate are equal to that of c1 while the X-coordinate
increases from one cell to the subsequent one by 1:

X(c(i+1))=X(ci)+1.

The first cell of the sequence is the given cell c1, the last one cm is a cell in the boundary shall
of the space and thus does not belong to SC. Somewhere in the sequence there must be a cell
f1 belonging to the frontier F(SC). Let us call it the frontier projection of c1. In the same way
one may find the frontier projection f2 of any other cell c2 of SC. Since the frontier F(SC) is
connected there exists a path PF in F(SC) connecting f1 with f2. We shall demonstrate that if
F(SC) is simple then there exists another path lying in the interior SC−F(SC) and connecting
c1 with c2.

According to Definition SF, each cell of a simple frontier contains in its SON* a connected
subset of SC. Consider two incident cells c' and c" of the path PF in the frontier F(SC). One of
them, say c', is bounding another, say c". Then SON(c")⊂SON(c') and

SON*(c")∩SC ⊂SON*(c')∩SC .

Therefore the union SON*(ci)∩SC∪SON*(ci+1)∩SC for two subsequent cells ci and ci+1 in the
path PF is connected. So is the union of the subsets SON*(ci)∩SC of all cells ci of PF. All
these subsets lie in SC−F(SC) since the cells of F(SC) are not contained in SON*(ci). The
union of PF with the paths from c1 to f1 and from c2 to f2 composes a path in SC−F(SC)

QP C
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connecting c1 with c2. This may be shown for any two cells of SC−F(SC). Therefore the set
SC−F(SC) is connected. It may be shown a similar way that the set An−SC−F(SC) is also
connected.

It would be interesting to prove the following supposition:

Supposition JM: A connected oriented and bounded (n−1)-dimensional manifold M(n−1)

without boundary, being embedded into an n-dimensional space SPn homeomorphic to an n-
dimensional ball Bn, decomposes SPn into two components.

To prove the supposition it would be enough to show that any such manifold is a simple
boundary of some connected n-dimensional subset of Bn, however, it is not easy to show this.

Theorem FN: Let An be a connected n-dimensional ACC, Gk and Hk two connected
k-dimensional with k≤n subsets of An such that Gk⊂Hk and the complement Hk−Gk is also
k-dimensional. Then the frontier Fr(Gk, Hk) decomposes Hk, i.e. Hk−Fr(Gk, Hk ) is
disconnected.

Proof: Consider Hk as a topological space. Then Hk consists of three disjoint subsets:

Hk=Int(Gk, Hk)∪Fr(Gk, Hk)∪Ext(Gk, Hk); (3)

i.e. the intersection of each two subsets of the right hand part of (3) is empty. Thus

Hk−Fr(Gk, Hk)=Int(Gk, Hk)∪Ext(Gk, Hk); (4)

The sets in the right hand part of (4) are both open in Hk and disjoint. Therefore there is no
space element incident with both Int(Gk, Hk) and Ext(Gk, Hk). It follows that there exits no
incidence path between Int(Gk, Hk) and Ext(Gk, Hk).

Lemma NB: Consider two n-manifolds M1 and M2 with boundaries while M1 ⊂ M2 is bounded
in M2. Let P be a point of ∂M1. Consider two neighborhoods of P: N2=SON(P, M2) is the
neighborhood of P in M2 and N1=SON(P, ∂M1) is the neighborhood of P in ∂M1. N1 is
obviously a subset of N2. Then the set N2−N1 consists of two components.

Proof: Since M1 is n-dimensional and bounded in M2 the boundary ∂M1 coincides with the
frontier Fr(M1, M2). Therefore N1 is the frontier of N2∩M1 relative to N2: N1=Fr(N2∩M1, N2).
According to Theorem FN N2−N1 is disconnected and it is the union of two disjoint subsets:
N2∩Int(M1, M2) and N2∩Ext(M1, M2). M1 is a manifold with boundary and P lies in its
boundary. Thus according to the definition of a manifold with boundary each of the subsets
N2∩Int(M1, M2) and N2∩Ext(M1, M2) is the interior of a half-ball and hence is connected.
Therefore the number of components of N2−N1 is exactly two.

Consider the special case of interlaced spheres Sk and Sm with m=0. According to the above
Corollary for each S(n−1) in an n-dimensional space An there exists an S0 interlaced with S(n−1).
The sphere S0 consists of two points, say P1 and P2. One of them, say P1, lies in the ball
spanned by S(n−1) (since the dimension of the sphere is n−1 there exists only one such ball),
the other lies outside. According to the definition IS any simple curve connecting P1 with P2
crosses S(n−1). Therefore P1 and P2 are disconnected in An−S(n−1) and the set An−S(n−1) is
decomposed by S(n−1) into exactly two components: the set of all cells of An connected with P1
and that of all cells connected with P2. This is what we call the Jordan property of S(n−1).

Corollary JS: A k-dimensional sphere Sk in an n-dimensional space An homeomorphic to an
n-dimensional ball decomposes the space An into two components if and only if k=n−1.

The Jordan property of spheres may be generalized in the following two ways:

a) for manifolds other than spheres;
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b) for spaces which are balls with disconnected boundaries.

5      Multidimensional tunnels

Interlaced spheres in an n-dimensional space may be "thickened" so that each 0-cell of a
sphere be united with its SON. In this way an m-dimensional sphere Sm, m<n, becomes
transformed to an open n-dimensional subset V. It may be thickened once more by applying
the above operation onto the 0-cells of the closure Cl(V) etc. The sphere Sm obviously lies in
the interior of V. If the number of the steps of thickening is not too great in comparison with
the size of the sphere Sk, k=n−m−1, interlaced with Sm before the thickening, then the spheres
remain interlaced also after the thickening.

For example, if one applies the thickening procedure onto one of two interlaced one-
dimensional spheres in a three-dimensional space one obtains a solid torus while the other
sphere is interlaced with each parallel of the torus. (We denote as a parallel each one-
dimensional sphere on the torus surface, which possess a spanning disk not intersecting the
interior of the torus; spheres whose all spanning disks intersect the interior are called
meridians).

If a connected n-dimensional subset V of an n-dimensional space contains a sphere interlaced
with another k-dimensional sphere Sk not intersecting V then we say that V has a tunnel of
dimension k. Thus a torus in a three-dimensional space has a one-dimensional tunnel.

Let us call the k-dimensional sphere Sk not intersecting V and interlaced with some sphere Sm

lying in ∂V, the axis of the k-dimensional tunnel of V and the sphere Sm the equator of the
tunnel of V.

The axis of a tunnel may also be thickened by the procedure described above. If the number
of the steps of thickening is not too great one obtains two n-dimensional subsets V1 and V2

each of which contains one of two interlaced spheres. We shall call such subsets interlaced
with each other. In the case of n=3 two links of a chain (in the common sense, rather than in
the sense of algebraic topology) may serve as an example of interlaced three-dimensional
subsets.

A simple example of a two-dimensional tunnel in a four-dimensional ACC A4 may be
constructed as follows. As we know, there exist in A4 an S2 interlaced with an S1. Let us take
an example of S1 in A4 and thicken it to a four-dimensional subset V4. Then we can found a
concrete S2 which is a two-dimensional axis of the two-dimensional tunnel in V4.
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We shall represent the example as a list of the coordinate quadruples. To make it as simple as
possible we take the number of cells small. The subset V consists of 12 four-dimensional
cells. Their topological coordinates we denote by x, y, z, t. All these cells have constant values
of the coordinates z and t and thus may be well represented by their projections onto the two-
dimensional coordinate plane XY:

a        b    c
        z=t=5;    y=t=6; y=t=6;

d        e    f
        x=6; t=5;    x=6; z=5; x=y=6;

Fig. 4. Six 2D cross sections through the 4D ACC containing V4 and S2

The 4-cells of V4= {(3,9,5,5),(5,9,5,5),(7,9,5,5), (9,9,5,5),
  (3,7,5,5), (9,7,5,5), (1)
  (3,5,5,5), (9,5,5,5),
  (3,3,5,5),(5,3,5,5),(7,3,5,5), (9,3,5,5)};

The subset V4 consists of the 4-cells of (1) and all cells of the interior of the union of the
closures of these 4-cells. (Thus we have defined an open set, which is only important to have
as few as possible cells). In this case V4 contains each 3-cells lying between two adjacent 4-
cells, e.g. the 3-cell (4,9,5,5) lies between the 4-cells (3,9,5,5) and (5,9,5,5). The axis S2

consists of all 2-cells of the 3D cube D3 defined by the inequalities:

6 ≤ x ≤12;
y = 6; (2)
2 ≤ z ≤ 8;
2 ≤ t ≤ 8;
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and all cells of dimension 0 and 1, belonging to their closures. These cells lie in six 2D planes
containing the boundary of the cube. The plane with the equation x=6; y=6; (z and t may take
arbitrary values) does not cross V4: none of the cells of V4 has x=6 and y=6. However, the
plane crosses the convex hull of V4, which contains e.g. the 2-cell C2=(6,6,5,5); Really, the
coordinates of C2 are convex combinations of the coordinates of the cells (3,7,5,5) and
(9,5,5,5). (This means 6=(3∙(9−6)+9∙(6−3))/(9−3)). Thus the two-dimensional plane x=6; y=6;
is a two-dimensional axis (different from S2) of the tunnel in V4.

Sets possessing tunnels of dimensions greater then 2 may be constructed in spaces of
dimensions greater then 4 in a similar way.

Proposition MT: A tunnel of dimension m may exist in a space of dimension at least m+2.

Proof: The set Vn possessing a tunnel must be a thickened sphere Sk (or a connected sum of
such spheres) of dimension k≥1 since Vn must be connected and S0 is disconnected. Sk may be
interlaceded with Sm only in a space of dimension n=k+m+1. From k≥1 follows n≥m+2.

Some time Yung Kong said to the author: "It is easy to answer the question, where is a cavity
in a body, but it is impossible to say, where is the tunnel". We shall try to answer the question:

The tunnel of V lies in the component C of the set Conv(V)−V, whose common
boundary with V (i.e. the set ∂C∩∂V) contains spheres interlaced with the axis of the
tunnel.

Here Conv(V) denotes the digital convex hull of V.

Fig. 5. Location of the tunnel in a torus

The notion of the digital convex hull may be deduced in the obvious way from our earlier
definition of a digital convex subset of an Cartesian ACC, which was defined for a two-
dimensional ACC [Kov 92]. Let us formulate the notions for the n-dimensional case.

Definition HN: A complex C (especially an ACC) is called homogeneously n-dimensional if
each cell of C is incident with an n-cell of C.

Definition SD: A homogeneously n-dimensional subcomplex SC of an n-dimensional ACC
An is called solid if its complement An−SC is also homogeneously n-dimensional.
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Definition HS: A solid n-dimensional subcomplex SC of an n-dimensional Cartesian ACC
An, whose cells have topological coordinates satisfying a linear inequality is called a digital
half-space of An.

It is of no importance, whether the coefficients of the inequality are rational numbers or real
ones since we consider only finite ACCs. For any inequality with real coefficients there exits
an inequality with rational coefficients defining the same subset of a finite ACC.

Definition CV: An non-empty intersection of a finite number of digital half-spaces is called a
digital convex set.

Definition CH: The digital convex set containing a given set V and possessing the minimum
number of cells is called the convex hull of V.

A three-dimensional volume V whose surface S is a 2-manifold of genus G has G tunnels. It is
not so easy, as in the case of a single tunnel, to specify their location. One possible way of
doing so consists in the following: the fundamental group of S has 2∙G generators. Among the
curves (one-dimensional spheres) corresponding to the generators there are G curves
interlaced with curves inside V and G other curves interlaced with curves not intersection V.
The letter are the axes of the tunnels; they are interlaced with the meridians of S. Now the
location of the tunnels may be defined as specified above. In spaces of dimension greater then
3 higher homotopy groups must be considered.

6      Conclusion
Spheres in multi-dimensional spaces may exhibit properties which are quite unusual from the
point of view of inhabitants of a three-dimensional space. These properties are on the one side
connected to generalization of the famous Jordan theorem for multidimensional spaces. On
the other side they enable us to generalize the notion of a tunnel for subsets of
multidimensional spaces.
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