
Algorithms and Data Structures for Computer Topology

Vladimir Kovalevsky

University of Rostock
Institute of Computer Graphics

Albert-Einstein-Str. 21, 18051 Rostock, Germany
kovalev@tfh-berlin.de

Abstract. The paper presents an introduction to computer topology with
applications to image processing and computer graphics. Basic topological
notions such as connectivity, frontier, manifolds, surfaces, combinatorial
homeomorphism etc. are recalled and adapted for locally finite topological
spaces. The paper describes data structures for explicitly representing classical
topological spaces in computers and presents some algorithms for computing
topological features of sets. Among them are: boundary tracing (n=2,3), filling
of interiors (n=2,3,4), labeling of components, computing of skeletons and
others.

Introduction: Topology and Computers

Topology plays an important role in computer graphics and image analysis.
Connectedness, boundaries and inclusion of regions are topological features which are
important for both rendering images and analyzing their contents. Computing these
features is one of the tasks of the computer topology. We use this term rather than
"computational topology" since our approach is analogous to that of digital geometry
rather than to that of computational geometry: we are using models of topological
spaces explicitly representing each element of a finite topological space as an element
of the computer memory, defined by its integer coordinates. The other possible
approach would be to think about the Euclidean space, to define objects by equations
and inequalities in real coordinates and to approximate real coordinates on a computer
by floating point variables.

Computer topology may be of interest both for computer scientists who attempt to
apply topological knowledge for analyzing digitized images, and for mathematicians
who may use computers to solve complicated topological problems. Thus, for
example, essential progress in investigating three-dimensional manifolds has been
reached by means of computers (see e.g. [14]).

Topological ideas are becoming increasingly important in modern theoretical
physics where attempts to develop a unique theory of gravitation and quantum
mechanics have led to the Topological Quantum Field Theory (see e.g. [2,13]), in
which topology of multi-dimensional spaces plays a crucial role. This is one more
possible application field for computer topology. Thus, computer topology is
important both for applications in computer imagery and in basic research in
mathematics and physics.

2

We describe here among others the new data structure called the 3D cell list which
allows to economically encode a segmented 3D image or a 3-manifold and gives the
possibility to access topological information without searching. Then we describe
algorithms on boundary tracing in 2D and 3D, filling of interiors of boundaries in nD
(successfully tested up to n=4), component labeling, computing skeletons and
computing basic topological relations in nD, n≤4. All algorithms are based on the
topology of abstract cell complexes and are simpler and more economical with
respect to time and memory space than traditional algorithms based on grid point
models.

1 Basic notions

In this section we recall some notions and definitions from the classical topology,
which are necessary for reading the subsequent sections.

1.1 Topology of abstract complexes

There exist topological spaces in which any space element possesses the smallest
neighborhood [1]. If the smallest neighborhood is finite then the space is called
locally finite. Among locally finite spaces abstract cell complexes are those especially
well suited for computer applications, as explained below. Abstract complexes are
known since 1908 [16]. They are called "abstract" because their elements, the abstract
cells, need not to be considered as subsets of the Euclidean space. A historical review
may be found in [7, 17].

Definition AC: An abstract cell complex (AC complex) C=(E, B, dim) is a set E
of abstract elements (cells) provided with an antisymmetric, irreflexive, and transitive
binary relation B ⊂ E × E called the bounding relation, and with a dimension function
dim: E → I from E into the set I of non-negative integers such that dim(e') < dim(e")
for all pairs (e',e")∈B.

The maximum dimension of the cells of an AC complex is called its dimension.
We shall mainly consider complexes of dimensions 2 and 3. Their cells with
dimension 0 (0-cells) are called points, cells of dimension 1 (1-cells) are called cracks
(edges), cells of dimension 2 (2-cells) are called pixels (faces) and that of dimension 3
are the voxels.

If (e', e")∈B then it is usual to write e'<e" or to say that the cell e' bounds the cell
e". Two cells e' and e" of an AC complex C are called incident with each other in C
iff either e'=e", or e' bounds e", or e" bounds e'. In AC complexes no cell is a subset
of another cell, as it is the case in simplicial and Euclidean complexes. Exactly this
property of AC complexes make it possible to define a topology on the set of abstract
cells independently from any Hausdorff space.

The topology of AC complexes with applications to computer imagery has been
described in [9]. We recall now a few most important definitions. In what follows we
say "complex" for "AC complex".

Definition SC: A subcomplex S = (E', B', dim') of a given complex C = (E, B,
dim) is a complex whose set E' is a subset of E and the relation B' is an intersection of
B with E' × E'. The dimension dim' is equal to dim for all cells of E'.

3

Since a subcomplex is uniquely defined by the subset E' it is possible to apply
Boolean operations as union, intersection and complement to complexes. We will
often say "subset" while meaning "subcomplex".

The connectivity in complexes is the transitive hull of the incidence relation. It can
be shown that the connectivity thus defined corresponds to classical connectivity.

Definition OP: A subset OS of cells of a subcomplex S of a complex C is called
open in S if it contains all cells of S bounded by cells of OS. An n-cell cn of an n-
dimensional complex C n is an open subset of C n since cn bounds no cells of C n.

Definition SON: The smallest subset of a set S which contains a given cell c of S
and is open in S is called the smallest (open) neighborhood of c relative to S and is
denoted by SON(c, S).

The word "open" in "smallest open neighborhood" may be dropped since the
smallest neighborhood is always open, however, we prefer to retain the notation
"SON" since it has been used in many publications by the author.

Definition CL: The smallest subset of a set S which contains a given cell c of S
and is closed in S is called the closure of c relative to S and is denoted by Cl(c, S).

Definition FR: The frontier Fr(S, C) of a subcomplex S of a complex C relative to
C is the subcomplex of C containing all cells c of C whose SON(c, C) contains both
cells of S as well as cells of the complement C−S.

Illustrations to AC complexes, SONs and closures of cells of different dimensions
may be found in [9, 10, 12].

Definition OF: The open frontier Of(S, C) of a subcomplex S of a complex C
relative to C is the subcomplex of C containing all cells c of C whose closure Cl(c, C)
contains both cells of S as well as cells of the complement C−S.

Definition BD: The boundary ∂S of an n-dimensional subcomplex S of a complex
C is the union of the closures of all (n−1)-cells of C each of which bounds exactly one
n-cell of S.

Definition TL: A connected one-dimensional complex whose each cell, except
two of them, is incident with exactly two other cells, is called a topological line.

It is easily seen that it is possible to assign integer numbers to the cells of a
topological line in such a way that a cell incident with the cell having the number k
has the number k−1 or k+1. These numbers are called the topological coordinates of
the cells [10].

Definition CR: A Cartesian (direct) product C n of n topological lines is called an
n-dimensional Cartesian complex [8].
The set of cells of C n is the Cartesian product of n sets of cells of the topological lines
which are the coordinate axes of the n-dimensional space C n. They will be denoted by
Ai, i=1,2,...,n. A cell of C n is an n-tuple (a1, a2,..., an) of cells ai of the corresponding
axes: ai∈Ai. The bounding relation of C n is defined as follows: the n-tuple (a1, a2,...,
an) is bounding another distinct n-tuple (b1, b2,..., bn) iff for all i=1,2,...n the cell ai is
incident with bi in Ai and dim(ai) ≤ dim(bi) in Ai.

The dimension of a product cell is defined as the sum of dimensions of the factor
cells in their one-dimensional spaces. Topological coordinates of a product cell are
defined by the vector whose components are the coordinates of the factor cells in their
axes.

4

Fig. 1a shows four cells in a two-dimensional Cartesian complex: P is a 0-cell (point),
C1 and C2 are 1-cells (a horizontal and a vertical crack), F is a 2-cell (pixel).

 a b
Fig. 1. Example of a two-dimensional Cartesian (a) and non-Cartesian (b) complexes

If we assign even numbers to the 0-cells and odd ones to the 1-cells of the axes then
the dimension of a cell in a Cartesian complex is equal to the number of its odd
coordinates.

1.2 Combinatorial homeomorphism

The notion of the homeomorphism of two sets is a fundamental notion of topology:
two sets are called homeomorphic or topologically equivalent if one of them can be
mapped onto the other by a one-to-one continuous function while the inverse map is
also continuous. There is another classical way to define the homeomorphism, which
way is directly applicable to complexes and may be extended to other locally finite
spaces. It is called the combinatorial homeomorphism and is based on the notion of
elementary subdivisions.

The concept of an AC complex is too general: it is e.g. possible to define an AC
complex where a 1-cell is bounded by more than two 0-cells. To avoid such situations
elementary subdivisions have been defined in classical topology (see e.g. a modern
survey in [17]) on the base of the topology of the Euclidean space. We give in what
follows an independent, purely combinatorial definition. It is a recursive definition:
we make the necessary definitions primarily for 1-cells and then for cells of still
greater dimensions.

A 1-cell which is bounded by exactly two 0-cells is called proper.

1. An elementary subdivision of a proper 1-cell c1, which is bounded by the 0-cells
c1

0 and c2
0, replaces the complex C'=(c1

0< c1>c2
0) by the 1-complex C" with two

1-cells c1
1, c2

1 and a new 0-cell c3
0: C"=(c1

0< c1
1>c3

0< c2
1>c2

0). One or both of
the 0-cells c1

0 and c2
0 can be missing.

Y

C1=(7,6)

C2=(6,3)

 X

 0 1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

0

P=(4,6)

F=(3,5)

5

2. The following Definitions should be used recursively: first for m=1, then for
m=2 etc.

An m-complex arising through N (N≥0) elementary subdivisions of a single proper
m-cell is called an open combinatorial m-ball. When m=1 then it is a sequence of
pairwise incident 1- and 0-cells, starting and ending with a 1-cell. A single 1-cell is
also an open combinatorial 1-ball.

The boundary of an open m-ball is called a combinatorial (m−1)-sphere. When
m=1 then it consists of exactly two 0-cells. The closure of an m-ball is called the
closed m-ball. The union of two closed m-balls with identical boundaries is called a
combinatorial m-sphere.

An m-cell cm, m>1 is called proper if its boundary ∂cm is an combinatorial (m−1)-
sphere.

Fig. 2. Example of the elementary subdivision of a 2-cell

An elementary subdivision in an n-complex replaces a proper m-cell cm, 1<m≤n, with
two proper m-cells c1

m, c2
m and one new proper (m−1)-cell c(m−1) bounding both m-

cells c1
m and c2

m while the boundary ∂c(m−1) is an (m−2)-sphere S(m−2)⊂∂c2,
∂(c1

m∪c(m−1)∪c2
m)=∂cm and c(m−1)∉∂cm.

An AC complex is called proper if all its cells are proper.

Two proper AC complexes are called combinatorially homeomorphic if they possess
isomorphic subdivisions. Fig. 3 shows an example.

Fig. 3. A subdivision of a digitized square, which is isomorphic to a digitized triangle;
black circles are new points introduced during the subdivision

c1
2

∂c1
2

∂c1=S0

c1

isomorphic

c2
2

6 7 8 9

10 11 12 13

3 4 5

1 2

6 7 8

10 11 12 13 9

1 2 4 5

3

6

1.3 Manifolds and surfaces

Among the variety of Hausdorff spaces there are spaces possessing certain relatively
simple and important topological properties. They are called manifolds. It is known
that manifolds of dimension not greater than three may be triangulated. This means
that there exists a simplicial complex homeomorphic to a given manifold.

An AC complex which is combinatorially homeomorphic to the triangulation of a
manifold may represent the topological properties of a manifold (of dimension up to
three) in the same way as the triangulation does. This fact opens the possibility to
model manifolds in computers for investigating them.

Definition MA: An n-dimensional combinatorial manifold (n-manifold) without
boundary is an n-dimensional complex M in which the boundary of the SON(P, M) of
each 0-cell P is homeomorphic to an (n−1)-sphere. In a manifold with boundary the
SON(P, M) of some 0-cell P may have a boundary homeomorphic to a "half-sphere",
i.e. to an (n−1)-ball.

Surfaces in a 3D space are frontiers of 3D subsets of the space. Under rather
general conditions surfaces are 2-manifolds. Conditions under which the frontier of a
3D subset is a 2-manifold as well as surfaces which are no manifolds but rather
"quasi-manifolds" are considered in [11].

2 Data structures

In this Section we consider some well-known and also some new data structures
useful for representing topological information in two- and three-dimensional
digitized images.

2.1 The standard raster

Two- and three-dimensional images are usually stored on a computer in arrays of the
corresponding dimension. Each element of the array contains either a gray value, or a
color, or a density. This data structure is not designed for topological calculations,
nevertheless, it is possible to perform topological calculations without changing the
data structure. For example, it is possible to trace and encode the boundary of a region
in a two-dimensional image in spite of the apparent difficulty that the boundary
consists of 0- and 1-cells, however, the raster contains only pixels which must be
interpreted as 2-cells. The reason is that a pixel is mostly a carrier of an optical feature
which is proportional to certain elementary area. Thus pixels must correspond to
elementary areas which are the 2-cells rather than 0- or 1-cells whose area is zero. On
the same reason voxels must correspond to 3-cells.

The tracing in the standard raster is possible because the concept of an AC
complex is the way of thinking about topological properties of digitized images rather
than a way of encoding them. Let us explain this idea for the case of tracing
boundaries.

7

We think of a two-dimensional (2D) image as of a 2D Cartesian complex containing
cells of dimensions form 0 to 2. The 2-cells (pixels) have integer coordinates which,
unlike to topological coordinates of a pixel being always odd (compare Section 1.1
and Fig. 1), may take in the standard raster any integer values, both odd or even.
Pixels are explicitly represented in the raster, whereas the 0- and 1-cells are present
implicitly.

Fig. 4. Non-topological coordinates of cells of lower dim

Coordinate Assignment Rule: Each pixel F of a 2D image ge
to it as its "own" cell. This is the 0-cell lying in the corner of F w
the origin of the coordinates (P1 in Fig. 4). Also two 1-cells inc
P are declared to be own cells of F (C1 and C2 in Fig. 4). Thus
own cells of lower dimensions. All own cells of F get the same c

In the three-dimensional case each voxel gets seven own cells
which are arranged similarly. These seven cells get the sam
corresponding voxel.

Unfortunately, some cells in the boundary of the raster remain
In most applications this is of no importance. Otherwise
correspondingly enlarged.

According to the above rule, it is not difficult to calculate
pixels incident with a given point and to get the gray values o
array. Depending on these gray values the tracing point P move
Details of the tracing algorithm are described in Section 3.1.

The majority of low level topological problems in image proc
in a similar way, i.e. without representing cells of lower dime
some multidimensional array. A typical exception is the problem
of a region defined by its boundary. The solution is simpler w
elements per pixel: one for the pixel itself and one more for its o
cell). The solution consists in reading the description of the bo
code), labeling all vertical cracks of the boundary in the array,
cracks in each row (starting with 0), and filling the pixels betw
even count 2⋅i and the next crack (with the count 2⋅i+1). The de
are described in Section 3.3.

 X

Y4

3

2

1

0
0 1 2 3 4

P1=(1,2) P2=(2,2)

P4=(2,3)P3=(1,3)

C1=(1,2)

C2=(1,2)

F=(1,2)
ensions

ts one 0-cell assigned
hich is the nearest to

ident with F and with
 each pixel gets three
oordinates as F.

 of lower dimensions
e coordinates as the

 without an "owner".
the raster must be

the coordinates of all
f the pixels from the
s to its next position.

essing may be solved
nsion as elements of
 of filling the interior
hen using two array
wn vertical crack (1-

undary (e.g. its crack
 counting the labeled
een the crack with an
tails of this algorithm

8

Even more complicated topological problems may be solved by means of the standard
raster. For example, when tracing surfaces (Section 3.2) or producing skeletons
(Section 3.5) simple pixels must be recognized. A pixel is simple relative to a given
region if the intersection of its boundary with the boundary of the region is connected.
It is easier to correctly recognize all simple pixels if cells of all dimensions of the
region are labeled. To perform this in a standard raster, it is possible to assign a bit of
a raster element representing the pixel F to each own cell of F. For example, suppose
that one byte of a two-dimensional array is assigned to each pixel of the image shown
in Fig. 4. Consider the pixel F with coordinates (1, 2) and the byte assigned to it. The
bit 0 of the byte may be assigned to the 0-cell P1, the bit 1 to the 1-cell C1, the bit 2 to
the 1-cell C2. The remaining bits may be assigned to F itself. Similar assignments are
also possible in the 3D case.

As we see, there is no necessity to allocate memory space for each cell of a
complex, which would demand four times more memory space than that needed for
pixels only, or eight times more than that needed for the voxels in the 3D case.

The most data structures commonly used in the processing of 2D images may be
used together with the standard raster. These are primarily the run length code and the
crack code. The latter differs from the widely used Freeman code in that it contains
only four directions rather than eight of the Freeman code. This is due to the
properties of a 2D Cartesian complex whose oriented 1-cells have exactly four
different directions.

2.2 The topological raster

Complexes used in topological investigations by means of a computer often have a
relatively small number of cells. The direct access to cells of all dimensions and the
possibility to use more than two different labels for cells of lower dimensions is then
more important than the possibility to save memory space. This is the case, e.g. when
investigating 3-maniflds represented as boundaries of subsets in a four-dimensional
space while the space is represented as a four-dimensional array. In such cases a
topological raster is more suitable than a standard one.

In a topological raster each coordinate axis is a topological line (see Definition TL
in Section 1.1). The 0-cells of the axis have even coordinates, the 1-cells have odd
coordinates. The dimension and the orientation (if defined) of any cell may be
calculated from its topological coordinates which in this case coincide with the
indices of the corresponding array element. The dimension of any cell is the number
of its odd coordinates, the orientation is specified by indicating which of the
coordinates are odd. For example, the cell C1 in Fig. 1 above has one odd coordinate
and this is its X-coordinate. Thus it is a one-dimensional cell oriented along the X-
axis. The 2-cell F has two and the 0-cell P has no odd coordinates. In a three-
dimensional complex the orientation of the 2-cells may be specified in a similar way:
if the ith coordinate of a 2-cell F is the only even one then the normal to F is parallel
to the ith coordinate axis.

We shall show in Section 3 how topological relations between cells, like the
bounding or incidence relations, may be calculated from their topological coordinates.

9

2.3 Data structures using lists of space elements

A data structure designed to efficiently represent topological information must satisfy
the following two demands:
1. The structure must contain complete topological information sufficient to get

knowledge about topological relations among the parts of the image or of a 3D
scene without a search. To the topological relations belong primarily the incidence
and the adjacency relations (two distinct subsets are adjacent if there is a space
element incident with both of them).

2. The structure must be able to correctly represent non-proper complexes which are
often used in topological investigations because they contain much less elements
than the corresponding proper complexes.

The notions of proper and non-proper complexes have been introduced by the author
in [12]. We give here only an example and the necessary short explanation. The
surface of a torus may be represented as a complex consisting of one 0-cell, two
1-cells and one 2-cell (Fig. 5a). This representation has the advantage of being very
simple.

However, if one would try to interpret this representation as an AC complex,
difficulties would occur since e.g. the AC complexes corresponding to Fig. 5a and
Fig. 5b are the same: the same sets of four cells, the same bounding relation and the
same dimensions of the cells. The difference between these two complexes is that
each of the 1-cells L1 and L2 in Fig. 5a bounds the 2-cell two times, on both sides. This
may be seen, if one considers the embedding of the complex in a Euclidean space: a
neighborhood of a point on the 1-cell contains two half-disks each of which lies in
one and the same 2-cell. However, there is no possibility to describe this relation in
the language of complexes.

Fig. 5. Representations of the surface of a torus (a) and of a simple complex (b)

Since one of our aims is to consider a purely combinatorial approach with no relation
to a Euclidean space we consider the possibility to overcome this difficulty by
introducing the notion of an incidence structure [12] as explained below.

Thus when considering Fig. 5a as a representation of a complex then it is not a
proper one (see Section 1.2): though each k-cell with k>0 is homeomorphic to an open
k-ball the boundaries of the cells are not homeomorphic to (k−1)-spheres.

Data structures known from the literature do not fulfil the above demands 1 and 2.
The classical incidence matrix (see e.g. [15]) enables one to encode any proper cell

b

P

F

L2

L1

a

P
L2

L1

F

10

complex. It contains complete topological information. However, it is not suitable to
encode non-proper complexes, as explained above. Besides that, it is not economical:
it contains in the case of an n-dimensional complex

k

n

k
k NN ⋅∑

=
−

1
1

elements where Nk is the number k-dimensional cells. This number is in practically
relevant cases too large. Because of this reasons data structures using "linear" rather
than "quadratic" lists of space elements are preferable.

Most 2D data structures of this kind can be hardly generalized for the 3D case. So
the structures using the notion of "half-edges", e.g. the FTG [5], or the n-G-map [3]
would need in the 3D case the introduction of "half-faces". In this case each edge
would occur in so many copies as the number of faces bounded by it. The structure
would be no more a graph as this is the case for the FTG: a complete FTG structure
would be needed for each 3D region, which is not economical. No suggestion for a
3D version of the FTG structure is known to the author.

In computer graphics and geometric modeling 3D list data structures are known
since many years. One of the most popular is the "boundary representation" [4]. This
structure enables one to easily trace the boundary of a 2D face of a body. However, to
find which bodies in a 3D scene are adjacent to each other demands an exhaustive
search through the descriptions of all vertices of all bodies in the scene. Even simpler
questions, as e.g. which edges are incident with a given vertex, demand an exhaustive
search to be answered. This is true for all 3D data structures known to the author.

As far as we know, the possibility to represent non-proper complexes was not
discussed in the literature before the author's publication [12].

2.4 The two-dimensional cell list

A 2D data structure satisfying the above mentioned demands, called the cell list, has
been suggested by the author [9]. The peculiarity of the cell list is that the topological
information, namely that of the incidence, is explicitly represented in it: it is possible
to directly get the information about the boundaries of regions and the endpoints of
lines. Information about adjacencies is available with a restricted local search since
"adjacent" means "incident with an incident element".

The data structure of the cell list is based on the topological notion of a block
complex [15] which we have adapted to AC complexes [9].

Definition BC: Consider a partition M of a complex A into subsets .k
iS Subsets

with k=0 are 0-cells of A; each of the subsets with k>0 is combinatorially
homeomorphic to an open k-dimensional ball. There are a bounding relation BR and a
dimension function Dim defined on M in the natural way. The triple

B(A)=(M, BR, Dim)
is called a block complex of A, the subsets k

iS are called k-dimensional blocks or k-
blocks.
Examples of two-dimensional block complexes and cell lists may be found in [9, 10].

11

2.5 The three-dimensional cell list

We call the subcomplex composed of all cells incident with a given proper cell c the
incidence structure of c. In a 2D space the incidence structure of a cell consists either
of a cyclic sequence or of two pairs of cells. The cyclic sequences are B-isomorphic
to one-dimensional complexes (B-isomorphism [11] is a one-to-one map retaining the
bounding relation but not the dimensions of cells). They can be represented in the
computer as chained lists. In the 3D case the incidence structures of 0- and 3-blocks
are B-isomorphic to two-dimensional complexes.

The author has shown [12] that in the case when the space is a 3-manifold the
incidence structures are B-isomorphic to two-dimensional spheres. A finite 2-sphere
is isomorphic to the surface of a convex polyhedron and therefore may be represented
as a list of polygonal faces. This is the theoretical base of the 3D cell list. This data
structure is appropriate to describe topological features of 3-manifolds and of 3D
scenes containing many bodies which may have common faces, edges or vertices.

Let us consider a simple example of a topological 3D cell list with only two bodies
where five faces of each cube are considered as a single face.

a b
Fig. 6. A simple 3D block complex (a) and its cross section perpendicular to L1 (b)

The 3D cell list of the 3D image of Fig. 6 is shown in the following tables.
List of branch points (0-blocks)

Label NSON Lines
P1 2 −L1, +L2

P2 2 +L1, −L2

The partial list of the 0-blocks indicates for each 0-block Pi the number NSON of all
1-blocks (lines) incident with Pi and their labels. The negative sign of a line's label in
the row of Pi indicates that this line goes away from Pi. We have skipped here the
geometric information, i.e. the coordinates.

In the list of 1-blocks (lines) NSON denotes the number of blocks in the SON of the
line Li, i.e. the number of blocks bounded by Li. The pointer Zk points to the chained
list containing the indices of these blocks as shown in the last column. The order of

V1

 F2

 N1 N3

 F3

 L1

V2
N2

 F2

V1

 P1

 F1, V1

P2

 N3

 F3, V2
 N1

 N2

 F2

 L1

 L2

12

the sequence corresponds to a right-handed rotation around Li. A negative sign before
a label of a face indicates that its normal is oriented against the direction of rotation.

List of lines (1-blocks)

Label Starting
point

End
point NSON Pointer Chained list

L1 P1 P2 5 Z1 −F1 V1 −F2 V2 +F3 0
L2 P2 P1 5 Z2 −F1 V1 −F2 V2 +F3 0

List of faces (2-blocks)

Label +Vol −Vol NCl Pointer Chained list
F1 − V1 4 Z3 P1 −L2 P2 −L1 P1

F2 V1 V2 4 Z4 P1 −L2 P2 −L1 P1

F2 − V2 4 Z5 P1 +L1 P2 +L2 P1

The list of faces contains for each current face Fi the labels of two volumes bounded
by Fi. The volume denoted by "+Vol" lies in the direction of the normal of Fi. NCl

denotes the number of blocks in Cl(Fi) which is shown as the chained list in the last
column. The order of the sequence corresponds to a right-handed rotation around the
normal of Fi. A negative sign before a label of a line indicates that the line is oriented
against the direction of the rotation.

List of volumes (3-blocks)

Label NCl Faces
V1 2 +F1, −F2

V2 2 +F2, +F3

The partial list of volumes contains for each volume Vi the number NCl of the incident
faces which are listed in the last column. The negative sign before the label of a face
in the row of Vi indicates that the normal to the face is pointing away from Vi.

3 Algorithms
We describe here some algorithms for computing topological features of subsets in
2D and 3D digitized images. Since the programming languages of the C-family are
now more popular than that of the PASCAL-family, we use here a pseudo-code which
resembles the C-language.

3.1 Boundary tracing in 2D images

Boundary tracing becomes extremely simple when thinking of a 2D image as of a 2D
complex. The main idea of the algorithm consists in the following: at each boundary
point find the next boundary crack and make a step along the crack to the next

13

boundary point. Repeat this procedure until the starting point is reached again.
Starting points of all boundary components must be found during an exhaustive
search through the whole image. The following subroutine Trace() is called each
time when a not yet visited boundary point of a region is found.

To avoid calling Trace() more than once for one region, vertical cracks must be
labeled (e.g. in a bit of Image[]) as "already visited". Trace() follows the
boundary of one foreground region while starting and stopping at the given point
(x,y). Points and cracks are present only implicitly as explained above in Section
2.1. Trace() starts always in the direction of the positive Y-axis. After each move
along a boundary crack C the values of only two pixels R and L of SON(P) of the end
point P of C must be tested since the values of the other two pixels of SON(P) have
been already tested during the previous move. For a detailed description of this
algorithm see [10].

The pseudo-code of Trace()
Image[NX, NY] is a 2D array (standard raster) whose elements contain gray
values or colors. The variables P, R, L and the elements of the arrays right[4],
left[4] and step[4] are structures each representing a 2D vector with integer
coordinates, e.g. P.X and P.Y. The operation "+" stands for vector addition. Text
after // is a comment.

void Trace(int x, int y, char image[])
{ P.X=x; P.Y=y; direction=1;
 do
 { R=P+right[direction]; // the "right" pixel
 L=P+left[direction]; // the "left" pixel
 if (image[R]==foreground)
 direction=(direction+1) MOD 4; // right turn
 else
 if (image[L]==background)
 direction=(direction+3) MOD 4; // left turn
 P=P+step[direction]; //a move in the new direction
 } while(P.X!=x || P.Y!=y);
} // end Trace

3.2 Tracing of surfaces in 3D

To trace surfaces of bodies in a 3D standard raster the method by Gordon and Udupa
[6] uses the 2D technique in 2D slices. The code of a single closed surface is
disconnected, i.e. it consists of isolated codes of the slices; 33% of the pixels are
visited twice, which is not economical, and a body whose parts have only common
cracks but no common faces are considered as disconnected.

A more efficient method producing a single connected sequence of code elements
for each closed surface is that of [11]. According to the method the program chooses
an arbitrary pixel of the surface S as the starting pixel and labels its closure. Then it
traces the open frontier Of(L, S) (see Section 1.1) of the set L of labeled cells, encodes
the pixels of Of(L, S) (1 byte per pixel), and labels the closures of simple pixels
(Section 2.1). This ensures that L remains homeomorphic to a closed 2-ball. It has
been proved that if the surface S is homeomorphic to a sphere then the traced

14

sequence is a Hamilton path: each pixel is visited exactly once. Otherwise there
remain a few non-simple pixels which are visited twice. Their code elements are
attached to the end of the sequence of simple pixels. Thus the code sequence is
always connected.

Fig. 7. The moves at the beginning of the tracing

A verbal description of the algorithm follows. A detailed description and the related
proofs may be found in [11].

The algorithm

Notations: S is the surface to be traced. It must be a 2-quasi-manifold. L⊂S is the
subset of labeled cells; it is homeomorphic to a closed 2-ball. The "rest sequence" is
the set of non-simple pixels at the stage when all simple pixels of S are already
labeled. The rest sequence is empty if the genus of S is zero.

1. Take any pixel of S as the starting pixel F0, label its closure and save its
coordinates as the starting coordinates of the code. This is the seed of L. Denote
any one crack of the boundary of Fr(F0,S) as Cold and find the pixel F of S which is
incident with Cold and adjacent to F0. Set Fold equal to F0 and the logical variable
REST to FALSE. REST indicates that the tracing of the rest sequence is running.

2. (Start of the main loop) Find the crack Cnew as the first unlabeled crack of Fr(F,S)
encountered during the scanning of Fr(F,S) clockwise while starting with the end
point of Cold which is in Fr(L,S). If there is no such crack and F is labeled stop the
algorithm: the encoding of S is finished.

3. If F is simple label its closure.
4. Put the direction of the movement from Fold to Cold and that of the movement from

Cold to F into the next byte of the code. If the pixel F is non-simple set the
corresponding bit in the code (to recognize codes of non simple pixels in the
ultimate sequence).

5. If REST is TRUE check, whether F is equal to Fstop and Cnew is equal to Cstop.
(These variables were defined in item 6 of the previous loop). If this is the case
stop the algorithm and analyze the rest sequence to specify the genus of S as
explained in [11]. Delete multiple occurrences of pixels from the rest sequence.

6. If F is simple set REST equal to FALSE; else set Fstop equal to F, Cstop equal to Cnew
and REST equal to TRUE.

7. Set Fold equal to F. Find the pixel Fnew of S incident with Cnew and adjacent to F. Set
F equal to Fnew and Cold equal to Cnew. Go to item 2. End of the algorithm.

S

a simple cell F L

Of(L, S)the common boundary is
connected

15

3.3 Filling the interiors of boundaries in multi-dimensional images

To test whether an n-cell P of an n-space lies in the interior of a given closed
boundary it is necessary to count the intersections of the boundary with a ray from P
to any point outside the space; however, it is difficult to distinguish between
intersection and tangency (Fig. 8 a and b). The solution becomes easy if the boundary
is given as one or many (n−1)-dimensional manifolds in a Cartesian AC complex and
the "ray" is a sequence of alternating n- and (n−1)-cells all lying in one row of the
raster (Fig. 8c).

Fig. 8. Intersection (a) and tangency (b) are difficult to distinguish in "thick" boundaries;
this is easy at boundaries in complexes (c)

In a 2D image the boundary must be a closed sequence of cracks and points (Fig. 8c).
Then intersections are only possible at vertical cracks and the problem of
distinguishing between intersections and points of tangency does not occur. The
method has been successfully implemented for dimensions n=2, 3, 4.

The pseudo-code
Denote by F the current n-cell of the n-dimensional standard raster. Choose a
coordinate axis A of the Cartesian space (e.g. A=X in the 2D case). Denote by C(F)
the own (n−1)-cell of F, whose normal is parallel to A (e.g. the vertical crack of F in
the 2D case). Label all (n−1)-cells of the given boundary whose normal is parallel to
A. In the 2D case when A=X these are the vertical cracks of the given boundary.

for each row R parallel to A do
{ BOOLEAN fill=FALSE;
 for each n-cell F in the row R do
 { if C(F) is labeled then fill=1−fill; // inverting fill
 if fill is TRUE then F=foreground;
 else F=background;
 }
}

3.4 Component labeling in an n-dimensional space

We consider here the simplest case of a 2D binary image in a standard raster while the
algorithm is applicable also to multi-valued and multi-dimensional images in a
topological raster. It is expedient to consider a multi-dimensional image as a one-
dimensional array Image[N]. For example, in the 2D case the pixel with coordinates
(x, y) may be accessed as Image[y⋅NX+x] where NX is the number of pixels in a row.

a b c

16

In a standard raster a function must be given which specifies which raster elements
are adjacent to each other and thus are connected if they have the same color. In our
simple 2D example we use the well-known "8-adjacency" of the foreground pixels
and the "4-adjacency" of the background pixels. In the general case the adjacency of
the n-cells of an n-dimensional complex must be specified by rules specifying the
membership of cells of lower dimensions [9] since an adjacency of n-cell depending
on their "color" is not applicable for multi-valued images.

In a topological raster the connectivity of two cells is defined by their incidence
which in turn is defined by their topological coordinates (see below Condition 3.6.3 in
Section 3.6).

The algorithm

Given is a binary array Image[] of N elements and the functions
NumberNeighb(color) and Neighb(i,k): the first one returns the number of
adjacent pixels depending on the color of a given pixel; the second one returns the
index of the kth neighbor of the ith pixel. As the result of the labeling each pixel
gets additionally (in another array Label[]) the label of the connected component
which it belongs to.

 first run second run

Fig. 9. Illustration to the algorithm of component labeling

The pseudo-code
Allocate the array Label[N] of the same size as Image[N]. Each element of
"Label" must have at least log2N bits, where N is the number of elements in Image.
In the first loop each element of Label gets its own index as its value:

for (i=1; i<N; i++) Label[i]=i;
for (i=1; i < N; i++)
{ color=Image[i];
 for (j=0; j<NumberNeighb(color); j++)
 { k=Neighb(i, j); //the index of the jth neighbor of i
 if (Image[k]==color) SetEquivalent(i,k,Label);
 }
} // end of the first run
SecondRun(Label,N); // end of the algorithm

The subroutine SetEquivalent() makes the preparation for labeling the pixels
having the indices i and k as belonging to one and the same component. For this
purpose one of the pixels gets the index of the "root" of the other pixel. The function

1 2 3 2 4 1

5 1 6 2 7 2 8 1

9 1 10 2 11 2 12 1

131 14 1 15 1 16 1

1 2 2 1

1 2 2 1

1 2 2 1

1 1 1 1

17

Root() returns the last value in the sequence of indices where the first index k is
that of the given pixel, the next one is the value of Label[k] etc. until Label[k]
becomes equal to k. The subroutine SecondRun() replaces the value of
Label[k] by the value of a component counter or by the root of k depending on
whether Label[k] is equal to k or not.

Pseudo-codes of the subroutines

subroutine SetEquivalent(i,k,Label)
{ if (Root(i,Label)<Root(k,Label))
 Label[Root(k,Label)]=Root(i,Label);
 else Label[Root(i,Label)]=Root(k,Label);
} // end of SetEquivalent

int Root(k, Label)
{ do
 { if (Label[k]==k) return k;
 k=Label[k];
 } while(1);
} // end of Root

subroutine SecondRun(Label,N)
{ count=1;
 for (i=0; i<N; i++)
 { value=Label[i];
 if (value==i)
 { Label[i]=count;
 count=count+1;
 }
 else Label[i]=Label[value];
 }
} // end of SecondRun

3.5 Skeleton of a set in 2D

Definition SK: The skeleton of a given set T in a two-dimensional image I is a subset
S ⊂ T with the properties:

a) S has the same number of connected components as T;
b) The number of connected components of I−S is the same as that of I−T;
c) Certain singularities of T are retained in S.

Singularities may be defined e.g. as the "end points" in a 2D image or "borders of
layers" in a 3D image etc.

A well-known difficulty in calculating skeletons is that it is impossible to remove all
simple pixels simultaneously without violating the above conditions. However,
representing an image as a complex C makes it possible to calculate the skeleton by a

18

procedure which may be either sequential or parallel. It is based on the notion of the
open frontier (s. Section 1.1 above). The procedure consist in removing simple non-
singular cells of T alternatively from the frontier Fr(T, C) and from the open frontier
Of(T, C). A cell c of the frontier Fr(T, C) (respectively of Of(T, C)) is simple if the
intersection of SON(c)−{c} (respectively Cl(c)−{c}) with both T and its complement
C−T is connected. We present a simple version for a 2D topological raster.

The algorithm

Let C[NX, NY] be a 2D array with topological coordinates. The subset T is given by
labeling cells of all dimensions of T: C[x, y] >0 iff the cell (x, y)∈T. To delete a cell
means to set its label C[x, y] to zero. A 0- or 2-cell c is considered as singular iff it is
incident with exactly one labeled cell other than c.

To calculate the skeleton of T run the following loop:
do { Scan C and delete all simple and non-singular cells of T∩Fr(T, C);

 CountClose = number of cells deleted during this scan;
 Scan C and delete all simple and non-singular cells of T∩Of(T, C);
 CountOpen = number of cells deleted during this scan;

} while (CountClose+CountOpen > 0);
// end of Algorithm

Fig. 10 shows an example.

 a b c

 d e f

Fig. 10. a) a given 2D subcomplex T; b) its frontier Fr; c) the set T−Fr: the simple cells of the
frontier deleted; d) the open frontier Of of the set T−Fr; e) the set T−Fr−Of: the simple cells of

the open frontier deleted; f) the skeleton

The result may be, if desired, easily transformed either to a sequence of pixels or to
1-complex containing only points and cracks.

19

3.6 Algorithms for topological investigations

Topological computations are particularly simple in a Cartesian complex with
topological coordinates. We present in the following sections some basic algorithms.

3.6.1 Computing the dimension of a cell in an n-dimensional space
If X=(X1, X2, ..., Xn) is a cell of an n-dimensional Cartesian complex then

∑
=

=
n

i
iMODXXDimension

1
.2)(

3.6.2 Condition of bounding in an n-complex: the cell A bounds the cell B
Ai is the ith coordinate of the cell A; dim(Ai) is the dimension of Ai in the ith
coordinate axis (dim(Ai) is either 0 or 1).

The condition: ;1)dim()dim(;...1 =∧≤=∀ MaxDifBAni ii

where dim(Ai) = Ai MOD 2; and MaxDif = max |Ai − Bi|; i=1...n.

3.6.3 Condition of incidence: the cell A is incident with the cell B
A bounds B OR B bounds A OR A = B;

3.6.4 Computing the SON of a k-cell A in an n-dimensional space
To explain the idea we first show as an example all cells of the SON of a 1-cell A in a
3D space. Let k=1 and A=(2, 3, 6). A has two even coordinates. It is possible to
change one or both of them by ±1 to get a cell bounded by A.
The number N of cells bounded by A: N = 2⋅C 1

2 + 22⋅C 2
2 = 2⋅2 + 4⋅1=8; where

C i
k denotes the number of combinations of i elements from k.

The cells bounded by A are: (1, 3, 6)
(3, 3, 6)
(2, 3, 5)
(2, 3, 7)
(1, 3, 5)
(1, 3, 7)
(3, 3, 5)
(3, 3, 7)

Fig. 11. The SON of a 1-cell in a 3D space

Now we present the pseudo-code of a function computing the SON of a cell "Cell"
in a 4-dimensional space. The coordinates of all cells C∈SON(Cell) will be saved in
the array SON[][4].

20

The pseudo-code

void SaveSON(int Cell[4], int SON[][4])
{ int C[4], step[4];
 //"step" contains the increments of the coordinates: 1 for even and 0 for odd ones
 for (k=0; k<4; k++)
 { if ((Cell[k] MOD 2)==0) step[k]=1;
 else step[k]=0;
 }
 i=0;
 // four nested loops; C runs through all cells bounded by Cell:
 for (C[3]=Cell[3]-step[3]; C[3]≤Cell[3]+step[3];C[3]++)
 for (C[2]=Cell[2]−step[2]; C[2]≤Cell[2]+step[2];C[2]++)
 for (C[1]=Cell[1]−step[1]; C[1]≤Cell[1]+step[1];C[1]++)
 for (C[0]=Cell[0]−step[0]; C[0]≤Cell[0]+step[0];C[0]++)
 { for (k=0; k<4; k++) SON[i][k]=C[k];
 i=i+1;
 }
} // end of SaveSON

A similar algorithm for computing the closure of a cell in a 4-dimensional space:

void SaveClosure(int Cell[4], int Cl[][4])
{ int C[4], step[4];
 //"step" contains the increments of the coordinates: 0 for even and 1 for odd ones
 for (k=0; k<4; k++)
 { if ((Cell[k] MOD 2)==1) step[k]=1;
 else step[k]=0;
 }
 i=0;
 // four nested loops; C runs through all cells bounding Cell:
 for (C[3]=Cell[3]−step[3]; C[3]≤Cell[3]+step[3];C[3]++)
 for (C[2]=Cell[2]−step[2]; C[2]≤Cell[2]+step[2];C[2]++)
 for (C[1]=Cell[1]−step[1]; C[1]≤Cell[1]+step[1];C[1]++)
 for (C[0]=Cell[0]−step[0]; C[0]≤Cell[0]+step[0];C[0]++)
 { for (k=0; k<4; k++) Cl[i][k]=C[k];
 i=i+1;
 }
} // end of SaveClosure

21

Conclusion

We have demonstrated that abstract cell complexes may be successfully used for
modeling locally finite topological spaces satisfying the classical axioms on a
computer and for solving topological problems. We have suggested a new data
structure, the 3D cell list, for encoding 3D segmented images or 3-manifolds in such a
way that topological relations between subsets may be immediately extracted from the
structure without searching. Another important property of the cell list is the
possibility to consistently describe the so-called non-proper complexes having the
advantage of being very simple although not representable by classical means since in
a non-proper complex a cell may multiply bound another cell.

We have presented descriptions and/or pseudo-codes of seven basic algorithms for
computing topological features of subsets of an abstract cell complex represented on a
computer as an n-dimensional array, n≤4. Some of the described algorithms are the
necessary tools when implementing high-level topological algorithms, namely:

Automatic calculation the cell list of a segmented (labeled) n-dimensional image
(n=2 or 3);

Handle decomposition of a 3-manifold in a 4D space, which is useful for
comparing two manifolds with each other.

Identification of faces of a polyhedron represented by a cell list and producing the
cell list of a 3-manifold with the aim of comparing two manifolds with each
other.

Modeling of linked spheres in an n-dimensional space (n=3, 4, 5) with the aim to
experimentally investigate their topological properties.

The letter algorithms have been developed and successfully tested by the author,
however, they cannot be described here because of paper size limitations.

An important open problem is, whether the described approach, which yields very
simple descriptions of 3-manifolds, may contribute to the problem of their
classification.

References

1. Alexandroff, P.: Diskrete Räume. Mat. Sbornik. 2 (1937) 501-518

2. Barett, J.: Quantum Gravity as Topological Quantum Field Theory. Jour. Math. Phys. 36
(1995) 6161-6179

3. Bertrand, Y., Fiorio, Ch., Pennaneach, Y.: Border Map: A Topological Representation for
nD Image Analysis. In: Bertrand, G., Couprie, M., Perroton, L. (eds.): Discrete Geometry
for Computer Imagery. Lecture Notes in Computer Science, Vol. 1568, Springer-Verlag,
Berlin Heidelberg New York (1999) 242-257.

4. Encarnacao, J., Strassler, W., Klein, R.: Computer Graphics. R. Oldenbourg Verlag, Munich
(1997)

22

5. Fiorio, Ch.: A Topologically Consistent Representation for Image Analysis: The Frontier
Topological Graph. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.): Discrete Geometry for
Computer Imagery. Lecture Notes in Computer Science, Vol. 1176, Springer-Verlag, Berlin
Heidelberg New York (1996) 151-162

6. Gordon, D., Udupa, J.K.: Fast Surface Tracking in Three-Dimensional Binary Images.
Computer Vision, Graphics and Image Processing 45 (1989) 196-214,

7. Klette, R.: Cell Complexes through Time. University of Auckland, CITR-TR-60, June 2000.

8. Kovalevsky, V.: On the Topology of Digital Spaces. In: Proceedings of the Seminar "Digital
Image Processing",.Technical University of Dresden (1986) 1-16

9. Kovalevsky, V.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics
and Image Processing 45 (1989) 141-161

10. Kovalevsky, V.: Finite Topology and Image Analysis. In: Hawkes, P. (ed.): Advances in
Electronics and Electron Physics, Vol. 84. Academic Press (1992) 197-259

11. Kovalevsky, V.: A Topological Method of Surface Representation. In: Bertrand, G.,
Couprie, M., Perroton, L. (eds.): Discrete Geometry for Computer Imagery. Lecture Notes
in Computer Science, Vol. 1568. Springer-Verlag, Berlin Heidelberg New York (1999),
118-135

12. Kovalevsky, V.: A New Means for Investigating 3-Manifolds. In: Borgefors, G., Nyström,
I., Sanniti di Baja, G. (eds.): Discrete Geometry for Computer Imagery. Lecture Notes in
Computer Science, Vol. 1953. Springer-Verlag, Berlin Heidelberg New York (2000) 57-68

13. Lawrence, R.: Triangulation, Categories and Extended Field Theories. In: Baadhio, R.,
Kauffman, L. (eds.): Quantum Topology. World Scientific, Singapore (1993) 191-208

14. Matveev, S.: Computer Classification of 3-Manifolds. Russian Journal of Mathematical
Physics 7 (2000) 319-329

15. Rinow, W.: Textbook of Topology. VEB Deutscher Verlag der Wissenschaft, Berlin (1975)

16. Steinitz, E.:Beitraege zur Analysis Situs, Sitzungsbericht Berliner Mathematischer
Gesellschaft, Vol.7. (1908) 29-49

17. Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer-Verlag,
Berlin Heidelberg New York (1995)

